

ME 423: FLUIDS ENGINEERING

Dr. A.B.M. Toufique Hasan

Professor

Department of Mechanical Engineering,

Bangladesh University of Engineering and Technology (BUET), Dhaka

Lecture-02 (02/09/2024) Hydraulics of Pipeline Systems

toufiquehasan.buet.ac.bd toufiquehasan@me.buet.ac.bd

Local losses / Minor Loss

A local loss / minor loss is any energy loss, in addition to that of pipe friction alone, caused by some **localized disruption of the flow in valves, bends, and other fittings.**

The representation of these losses depends heavily upon experimental data. Minor losses are usually computed from the equation

$$
h_L = K_L \frac{V^2}{2g} \tag{2.26}
$$

in which $V = Q/A$ is normally the downstream mean velocity.

For enlargements the following alternative formula applies:

$$
h_L = K_L \frac{(V_1 - V_2)^2}{2g} \tag{2.27}
$$

in which V_1 and V_2 are, respectively, the upstream and downstream velocities.

In Eq. 2.27 the loss coefficient *K^L* is unity for a **sudden enlargement** and takes on values between 0.2 and 1.2 for assorted gradual conical enlargements.

The head loss for flow from a pipe into a reservoir is a special but important case of Eq. 2.27, called the **exit loss; in this case** $K_i = 1$ **and** $V_i = 0$ **,** independent of the geometric details of the pipe exit shape.

Local loss / Minor Loss

Figure 2.3 Local loss coefficient for a sudden contraction as a function of diameter ratio.

Upon consulting Table 2.1 for cast iron pipe, we determine $e/D = 0.010/12 = 0.00083$. From the Moody diagram, Fig. 2.2, we find $f = f(Re, e/D) = 0.0185$. The Darcy-Weisbach equation, Eq. 2.10, then produces

 $Re = \frac{VD}{v} = \frac{(10.18)(1)}{1.2 \times 10^{-5}} = 8 \times 10^{5}$

 $V = \frac{Q}{4} = \frac{8}{\pi/4} = 10.18$ ft/s.

is 60°F with a kinematic viscosity of $v = 1.2 \times 10^{-5}$ ft²/s.

$$
h_f = f \frac{L}{D} \frac{v}{2g} = (0.0185) \frac{1200}{12/12} \frac{(10.18)}{2(32.2)} = 35.7 \text{ ft}
$$

 $T_{\rm U}$

 $1200 \quad (10.18)^2$

A cast iron pipe connects two reservoirs. The line is 1200 ft long and has a diameter of 12 in.

If it were to convey 8 ft³/s (cusec), what would be the frictional head loss for this pipe? Fluid

(Example Problem 2.2)

Thus the pipe Reynolds number is

Problem

(Example Problem 2.3)

The pipe in Example Problem 2.2 actually connects two reservoirs having a difference in water surface of only 20 ft, so that pipe is clearly incapable of conveying 8 ft³/s. Now a new pipe has been installed between the reservoirs. If it is made of welded steel and has a diameter of 18 in.

- (a) If only pipe friction is considered, what is the new discharge?
- (b) If local losses for a sharp-edged entrance, a fully open gate valve near the pipe exit, and the pipe exit itself are also considered, how much does the computed discharge change?
- (c) If the gate valve in part (b) were only ¼ open, what would then be the discharge? Fluid is 60°F with a kinematic viscosity of $v = 1.2 \times 10^{-5}$ ft²/s.

All parts of this problem belong to category 2, since now Q and not h_I is sought. (a) We are told to assume in this case that

$$
z_1 - z_2 = 20 \, ft = h_f = f \frac{L V^2}{D 2g}
$$

From Table 2.1 for welded steel, we find $e/D = 0.0018/18 = 0.0001$. If the flow is assumed to be in the wholly rough flow zone of the Moody diagram, Fig. 2.2, $f = 0.012$. Hence

$$
h_f = 20 = (0.012) \frac{1200}{18/12} \frac{V^2}{2(32.2)}
$$

Table 2.1 PIPE ROUGHNESSES

and $V = 11.6$ ft/s. Now we must check $Re = VD/v = 11.6(18/12)/11.2 \times 10^{-5} = 1.4 \times 10^{6}$, which is not in the wholly rough zone; this *Re* and the value of e/D imply $f = 0.013$. Using 0.013 in place of 0.012 leads to $V = 11.1$ ft/s. The small change in Re will cause no further change in f , so the discharge can now be computed as

$$
Q = VA = (11.1)\frac{\pi}{4} \left(\frac{18}{12}\right)^2 = (11.1)(1.77) = 19.6 \text{ ft}^3\text{/s}
$$

(b) In this case

$$
20 = \sum h_L = \left(K_{ent.} + f\frac{L}{D} + K_{valve} + K_{exit}\right)\frac{V^2}{2g}
$$

The velocity head factors out only because each loss term is associated with the same pipe size, area and velocity. Table 2.5 supplies 0.5 and 0.2 for the entrance and valve loss coefficients; always $K_{exit} = 1.0$. From part (a) we take our first estimate of the friction factor as 0.013, leading to

$$
20 = \left(0.5 + 0.013 \frac{1200}{18/12} + 0.2 + 1.0\right) \frac{V^2}{2g}
$$

and yielding V = 10.3 ft/s. Again check $Re = VD/v = 10.3(18/12)/1.2 \times 10^{-5} = 1.3 \times 10^{6}$, so the initial estimate of f is adequate. Now $Q = (10.3)(1.77) = 18.2 \text{ ft}^3/\text{s}$ so the discharge has decreased by 1.4 ft³/s, a bit under 8%, as a consequence of considering the local losses.

Table 2.5 Loss Coefficients for Fitting

Table 2.5 Loss Coefficients for Fitting

(c) When the gate valve is only $1/4$ open, we find from Table 2.5 that the valve loss coefficient has increased from 0.2 to 17.0. The valve loss remains a local loss, but it is no longer in any way a minor loss, since it will cause more head loss than the pipe friction term. Replacing 0.2 in part (b) by 17.0, we recompute and find $V = 6.68$ ft/s. The new, lower Reynolds number is $Re = 8.4 \times 10^5$, so the new friction factor is $f = 0.0135$. A recomputation of the velocity gives $V = 6.63$ ft/s, and so $Q = 11.7$ ft³/s, a decrease of about one third from the discharge in part (b).